

18MAT21

Second Semester B.E. Degree Examination, Aug./Sept. 2020 Advanced Calculus and Numerical Methods

Time: 3 hrs .
Max. Marks:100
Note: Answer any FIVE full questions, choosing ONE full question from each module.
1 a. Find the angle between the surfaces $\frac{\text { Module-1 }}{\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{z}^{2}}=4$ and $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}-13$ at (2, 1, 2).
b. If $\vec{F}=\nabla\left(x y^{3} z^{2}\right)$, find div \vec{F} and curl \vec{F} at $(1,-1,1)$.
(06 Marks)
(07 Marks)
c. Find the value of the constant a such that the vector field
$\vec{F}=\left(a x y-z^{3}\right) \hat{i}+(a-2) x^{2} j+(1-a) x z^{2} k$
is irrotational and hence find a scalar function ϕ such that $\vec{F}=\nabla \phi$.
(07 Marks)
OR
2 a. If $\vec{F}=\left(3 x^{2}+6 y\right) i-14 y z j+20 x z^{2} k$, evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ from $(0,0,0)$ to $(1,1,1)$ along the curve given by $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}$ and $\mathrm{z}=\mathrm{t}^{3}$.
(06 Marks)
b. Use Green's theorem to find the area between the parabolas $x^{2}=4 y$ and $y^{2}=4 x$. (07 Marks)
c. If $\overrightarrow{\mathrm{F}}=2 x y i+\mathrm{yz}^{2} j+x z k$ and s is the rectangular parallelopiped bounded by $x=0, y=0, z=0$ and $x=2, y=1, z=3$. Find the flux across S.
(07 Marks)

Module-2

3 a. Solve $\left(D^{2}+3 D+2\right) y=4 \cos ^{2} x$.
(06 Marks)
b. Solve $\left(D^{2}+1\right) y=\sec x \tan x$, by the method of variation of parameter.
(07 Marks)
c. Solve $x^{2} y^{\prime \prime}+x y^{\prime}+9=3 x^{2}+\sin (3 \log x)$.
(07 Marks)

OR

4 a. Solve $y^{\prime \prime}+2 y^{\prime}+y=2 x+x^{2}$. (06 Marks)
b. Solve $(2 x+1)^{2} y^{\prime \prime}-6(2 x+1) y^{\prime}+16 y=8(2 x+1)^{2}$.
(07 Marks)
c. The current i and the charge q in a series circuit containing on inductance L , capacitance C , emf E satisfy the differential equation: $L \frac{d i}{d t}+\frac{q}{c}=E ; i=\frac{d q}{d t}$. Express q and i interms of t, given that $\mathrm{L}, \mathrm{C}, \mathrm{E}$ are constants and the value of i, q are both zero initially.
(07 Marks)

Module-3

5 a. Form the partial differential equation by eliminating the arbitrary function from $\phi\left(x y+z^{2}, x+y+z\right)=0$.
(06 Marks)
b. Solve $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y$ for which $\frac{\partial z}{\partial y}=-2 \sin y$ when $x=0$ and $z=0$ if $y=(2 n+1) \frac{\pi}{2}$.
(07 Marks)
c. Derive one dimensional wave equation in the standard form $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
(07 Marks)

OR

6 a. Form the partial differential equation by eliminating the arbitrary function form $f\left(\frac{x y}{z}, z\right)=0$.
(06 Marks)
b. Solve $\frac{\partial^{2} z}{\partial y^{2}}=z$, given that when $y=0, z=e^{x}$ and $\frac{\partial z}{\partial y}=e^{-x}$.
(07 Marks)
c. Find all possible solutions of one dimensional heat equation $\frac{\partial u}{\partial t}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}$ using the method of separation of variables.
(07 Marks)

Module-4

7 a. Test for convergence of the series $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!} x^{n},(x>0)$.
(06 Marks)
b. Solve the Bessel's differential equation leading to $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$.
(07 Marks)
c. Express $f(x)=x^{4}+3 x^{3}-x^{2}+5 x-2$ interms of Legendre's polynomials.

8 a. Test for convergence of the series $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$.
(06 Marks)
b. If α and β are two distinct roots fo $\mathrm{J}_{n}(x)=0$. Prove that $\int_{0}^{1} \mathrm{xJ}_{\mathrm{n}}(\alpha x) \mathrm{J}_{\mathrm{n}}(\beta x) \mathrm{dx}=0$. If $\alpha \neq \beta$.
c. Express $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}^{2}-\mathrm{x}-3$ interms of Legendre's polynomials.

Module-5

9 a. Find the real root of the equation : $\mathrm{x}^{3}-2 \mathrm{x}-5=0$ using Regula Falsi method, correct to three decimal places.
(06 Marks)
b. Use Lagrange's formula, find the interpolating polynomial that approximates the function described by the following data.

X	0	1	2	5
$f(x)$	2	3	12	147

c. Evaluate $\int_{0}^{1} \frac{\mathrm{xdx}}{1+\mathrm{x}^{2}}$ by Weddle's rule, taking seyen ordinates and hence find $\log \mathrm{e}^{2}$.

OR

10 a. Find the real root of the equation $x e^{x}-2=0$ using Newton - Raphson method correct to three decimal places.
b. Use Newton's divided difference formula to find $f(4)$ given the data :

x	0	2	3	6
$f(x)$	-4	2	14	158

c. Use Simpson's $\frac{3}{8}$ th rule to evaluate $\int_{1}^{4} \mathrm{e}^{1 / x} \mathrm{dx}$.

